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Abstract 

A model is presented of the motion of a heavy gas cloud down a uniform slope in calm ambient 
conditions. The model is derived from solutions of the shallow water equations with appropriate 
boundary conditions. Its predictions are shown to agree adequately with experimental results in 
calm conditions, and a possible generalisation to allow for the presence of a wind is discussed. 

_ 

1. Introduction 

Integral (or box) models of gas dispersion are now a standard tool for the 
analysis of flammable and toxic hazards, posed by major industrial plant. 
Recent developments, including work under the recently completed Major 
Technological Hazards programme of the Commission of the European Com- 
munities, have been aimed at extending the understanding of heavy gas flows 
to situations where the nature of the terrain, or of structures on it, may have 
a significant effect on the dispersion. 

One such relatively simple situation is that where the ground slopes. Hazard- 
ous clouds are very often significantly heavier than air and such sloping 
terrain is known to have a important effect. Models of the behaviour of a heavy 
cloud released instantaneously on a slope have recently been presented by 
Deaves and Hall [l] and by Nikmo and Kukkonen [2]. 

Each of these models is an intuitively appealing generalisation of the flat 
ground integral model approach to include the effect of slopes. However, in 
each case the effect of the slope is only found with a numerically computed 
solution to a set of differential equations. Whilst this situation is quite usual, it 
is highly desirable to have a more direct understanding of the nature and 
effects of the assumptions involved in such models. 
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The importance of such an understanding cannot be overstated, Credible 
hazard analysis can only come about using models which are well validated on 
(of necessity) small scale data, and which incorporate sound physical assump- 
tions {and accurate calculational methods) in extrapolating their predictions 
to larger scales. In situations where data are relatively sparse, and the possible 
validation therefore relatively incomplete, the importance of the sound phys- 
ical assumptions is highlighted still further. 

Our objective here, then, is to examine the very simple case of a heavy cloud 
released instantaneously on to a uniform slope and dispersing isothermally in 
a way which is known to conserve buoyancy. We shall focus here on the effect 
of the slope on the overall motion of the cloud, rather than on any effect it may 
have on dilution rates. In order to do this, we shall start by discarding all other 
complicating factors. We therefore restrict ourselves apriori to the case of zero 
wind, and idealise to the extent that no mixing is assumed. This, as we shall 
show, allows considerable progress in understanding the effect of the cloud 
falling down the slope. 

Tn particular an equation is derived relating the cloud’s terminal velocity 
down the slope (where gravity balances resistance forces) to its density and 
volume, and to the gradient of the slope. Comparison with data will show that 
this assumption yields very plausible results. 

2. Two-dimensional releases on slopes 

2.1 Introduction 
Our main purpose is to present results for the case of a three-dimensional 

cloud released instantaneously. The derivation of this model, however, relies 
strongly on the two-dimensional results already presented by Jones et al. [3], 
which we shall therefore review briefly here. 

The essential assumption of our approach is that it is reasonable to consider 
the motion of a cloud on a slope, independently of its mixing with the ambient 
air. Thus we are attempting to assess how a (fictitious) cloud of fixed density 
might behave on a slope. Of course, any complete model of gas cloud behaviour 
must model mixing accurately, and we shall return to a discussion of this 
below. 

The behaviour of a cloud of fixed density is readily accessible via the shallow 
water equations, which contain the added assumptions that the cloud is of 
large horizontal extent compared with its depth, and that the slope is not too 
steep. That is to say, if we designate the fluid depth as H, the horizontal extent 
A, and the gradient of the slope r: we require NC< A and I- << 1. Later we shall 
discuss the regimes H= O(rA) and HZ= O(rA). Let us note here that these are 
not incompatible with the formal restrictions imposed by shallow water theory. 
For our purposes here, when we refer to a “tall” cloud we mean Hx-O(rA) 
rather than one which violates the shallow (H<< A) assumption. 
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2.2 The two-dimensional shallow water model 
The shallow water equations in one horizontal dimension (implying a two- 

dimensional flow when the vertical, depth-averaged dimension is counted) are: 

W--a)+~(uV-4)=0 
at ax (1) 

Here t is time, and x is the horizontal space coordinate. The fields are the 
horizontal velocity u and the height h of the top of the cloud above a fixed 
datum (see Fig. 1). The quantity a, is the height of the ground level above the 
datum, so that h-a is the fluid depth, We are considering a cloud of density 
p spreading in an ambient atmosphere of density pa and g” is the reduced 
acceleration due to gravity 

g”=g(P-PP,)lP (3) 

In the case studied here, as mixing is not yet incorporated into the model, g” is 
constant_ 

The fact that there will be significant resistance exerted by the ambient air 
to the cloud spread is embodied in the boundary conditions. This resistance to 
motion can be incorporated [447] in the boundary condition 

u~=kf&‘W--a)f (4) 

where g’ is defined, (slightly differently from g”) by 

g’=dP-PP,)lPa (5) 

and (h- a)f, uf are the fluid depth and (normal component of) velocity at the 
edge of the cloud, and kf is a constant (O(1)) Froude number. (Note that kf is 

h D 

_--_--a_--a-- 

Fig. 1. A gas cloud on a slope; definition of geometric variables. 



104 D.M. Webber et al./J. Hazardous Mater. 33 (1993) ICI-l.22 

not identical to the similar quantity used in integral models, which is based on 
the mean depth rather than the frontal depth; for self similar flow the two 
Froude constants have a constant ratio.) 

The above boundary condition expresses a resistance pressure of the ambi- 
ent air and we shall adopt it wherever the cloud edge is moving into the 
ambient fluid. 

Where the cloud edge is receding from the ambient fluid we shall adopt the 
boundary condition 

hf=O (4% 

allowing movement of the trailing edge without resistance. 
Here we shall consider only a uniform slope, downwards in the direction of 

increasing x, given by 

a(x)=-rx (7) 

where the slope r is constant and positive. 

2.3 Analytic solution of the shallow water equations 
As we have seen [3], there is a very simple analytic solution of the above 

problem, representing a wedge of gas moving downhill at its terminal velocity 
(corresponding to a balance of gravity and resistance forces). The derivation of 
this is briefly as follows. 

Assume there is a “terminal velocity” solution in which the fluid velocity is 
independent of both time and space. If this is the case, then the first of the two 
shallow water equations becomes 

(&+u ;) (h-a)=0 (8) 

and the solution must have the form 

(h-a)=H(x-ut) (9) 

for some function H. At the rear boundary, x =Xb(t), which follows the cloud, 
the fluid height is zero, so that 

H(X, - ut) = 0 (10) 

and the origin of the coordinate system can now be chosen so that X, = ut. The 
boundary condition at the front is 

(h-ajf=u:Ig’kfZ (11) 

and this can now be rewritten as 

H(X‘-ut)=u:/gV+ (12) 
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where X, is the position of the front of the fluid region. The right hand side of 
this equation is constant, as the velocity is constant (by assmption), and 
therefore the left hand side of this equation has to be constant. If the extent of 
the gas cloud is L = Xf - Xb then: 

H(L) = u2/g’k: (13) 

and L must therefore be constant. Note also from eq. (11) that a solution with 
constant u implies constant frontal depth. 

The second equation of the two shallow water equations can be written as 

!E+u$-g’f ( w-+ 
dX > 

(14) 

With the velocity u assumed independent of space and time, this equation 
reduces to 

@h--+ 
ax (1% 

where r = - da/dx is the gradient of the slope as defined above. With h-a of the 
above form H(x - ut), then clearly we must have 

H(x-uut)=r[x-Uut] (16) 

up to a possible additive constant, (which is simply equivalent to a choice of 
origin). The front depth (h -u)~ is now just TL, and so the front condition gives 
the terminal velocity 

u=k,[I-g’L] “’ (17) 

It is convenient to define the two-dimensional volume V of the cloud (the 
volume per unit width or side area). For the above solution this is just 

V==+Lv (1% 

In terms of this, the cloud moves at a speed 

U = 2”4kJ l/4 Eg’2 V] l/4 
(1% 

The last factor can be anticipated from dimensional analysis, but this result 
does show that the heavy gas cloud (of a given volume and density) moves 
down the slope with a terminal velocity proportional to the fourth root of the 
gradient of the slope. 

2.4 Numerical solution of the shallow water equations 
It is worth emphasising that the above analytic solution was originally 

found after a numerical solution had revealed this very simple asymptotic 
behaviour at large time. This demonstrates that the solution is indeed a stable 
one, and is therefore valid within the assumptions. The evolution found for 
a wedge released from rest is shown in Figures Z(a-d). 
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Fig. 2.(a, b). Motion, in two dimensions, of a “wedge” released from rest, showing the 
development of “head” and “tail” regions separated by a hydraulic jump. 
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Fig. 2. (c, d). Continued motion, in two dimensions, of a “wedge” released from rest, showing 
the collapse of the hydraulic jump and the formation of a wedge moving uniformly. 
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2.5 Comment 
The solution of the shallow water equations discussed above is peculiar 

in that the cloud does not spread. This is a consequence of the boundary 
conditions, combined with the existence of a slope. The motion of the down 
slope edge, is just as one would expect for a cloud on flat ground; the collapse of 
the upslope edge, and the subsequent H=O boundary condition, does not 
constrain its velocity, allowing it simply to follow the fluid motion. In this way 
the slumping is turned into a bulk downhill motion. It is thus clear how the 
assumptions built into the model can yield this result, which we feel is 
eminently plausible. 

3. Three-dimensional releases on slopes 

3.1 The shallow water model 
The two-dimensional model of Section 2 is interesting but very restrictive, 

More interesting is the corresponding evolution of a three-dimensional cloud 
released on the slope. Our numerical scheme for solving shallow water equa- 
tions cannot yet cope with three dimensions (two horizontal dimensions) but, 
as we shall now show, there does exist an almost equally simple analytic 
solution in this case. 

Consider first the cross-slope dimension. At first one might imagine that the 
cloud’s behaviour as regards this dimension is unaffected by the slope. How- 
ever, a cloud which does not spread longitudinally on the slope, but which 
continues to spread laterally, seems a little outlandish. It would therefore seem 
pertinent to assume that a solution exists which spreads neither longitudinally 
nor laterally, but moves down the slope with no change in shape. This is the 
key to the derivation of the appropriate solution. 

3.1.1 Shallow water equations 
Following the method adopted for the two dimensional case, we take the 

shallow water theory in the horizontal plane with coordinates x in the form 

d(h - a) 

a.?! 
+V-(u(h-a)=0 

au 
t+(u-V)u+g"Vh=O 

(20) 

(21) 

with g” as before, and a uniform slope 

a(x)=Tx-ii (5% 

where, in keeping with our earlier two-dimensional formalism, we take 

?i=(-1,O) 03) 
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Fig. 3. A three-dimensional cloud moving uniformly, at constant velocity with no change in 
shape. The shallow water equations with appropriate boundary conditions admit a solution 
of this ‘form. 

in the (x, y) plane. We shall now show that there is a solution for a cloud of 
constant uniform velocity, flat top, and fixed shape, exactly as in the two- 
dimensional case. Figure 3 illustrates this situation. 

3.1.2 Solution of the equation 
In fact it is clear that there is a solution of the equations with 

u=-uuri 

with constant u, and 

(h-u)=H(ii-(ut-Xx)) 

with 

VH= -I-e 

(24) 

(25) 

(26) 

implying 

H=I-ii.(ut-xx) 

3.1.3 The boundary condition at the rear 
The rear of the cloud again has zero depth and, at any given time t, is 

a straight line across the slope given by 

x=%(t, Y> (27) 

foryin [-Y, +Y], where 

&(GY)=ut+(O,Y) (28) 

and Y is the overall half-width of the cloud at the trailing edge. 
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3.1.4 The boudnary condition at the front 
Having thus satisfied the trailing boundary condition, it remains to satisfy 

the front condition. Let us take the length of the cloud in the direction of the 
slope to be L(y), as illustrated in the plan view of Fig. 4. This is such that 
L( -y)=L(y); L( Y)=O; and we define L (0) = A. The front condition 

cw 

SIDE 

TOP 

I Hlyl = I-. Lly) 

Fig. 4. Determination of the shape of the cloud from the boundary conditions. 
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is now defined for a front velocity component uf orthogonal to the edge of the 
cloud. Therefore 

(30) 

at a transverse distance y from the centre line. At this point (h--a),= l-L(y), 
and so, after a little manipulation, the boundary condition gives the equation 

from which we deduce 

A=u’/k:g’T 

and 

where 

i&L/A, Yi,=YlA 

The solution of this equation may be written parametrically 

L= cos2CO 

~=w+coso sin03 

This shape is illustrated to 
dimensional generalisation of 
dimensions in Section 2. 

3.1.5 Properties of the solution 

(31) 

(32) 

(33) 

(34) 

as 

(35) 

scale in Fig. 5. This completes the three- 
the simple free-fall cloud presented for two- 

As we have already noted, the velocity u is related to the overall length A of 
the cloud by 

u=k,,_/g’l-A 

As before, 
given by 

+;A 
V= j dy 

I[ 
-2A 

it is appropriate to relate this to the volume V of the cloud. This is 

L(Y) 
j dx-[I-x]=I-A3R6 
0 

(36) 
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Fig. 5. The scaled plan view of the cloud. The full width (Y) is 7~ times the length (X). 

where 

Our final result for a cloud of given volume and density is that the free-fall 
velocity on a slope I is 

(37) 

This is slightly different from the two-dimensional result. The final factor is 
again as expected from dimensional analysis, but the slope dependence is now 
a cube root in place of the fourth root with pertained earlier. It is also 
interesting to note the prediction that the cloud is r~ times as wide across the 
slope as it is long. 

Examining the solution, we can again see how a non-spreading cloud can 
come about. In the longitudinal direction it is exactly as in the two- 
dimensional case. The edge velocity is at all points normal to the cloud 
boundary, but is exactly accounted for by the overall motion of the cloud. At 
the outside rear edge where the normal points across the slope, the depth and 
the spreading velocity reach zero together, allowing a non-spreading solution. 
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3.2 Air entrainment 
Modelling air entrainment in the context of the shallow water model is 

a fairly complicated exercise. A very practical course, however, which is in 
keeping with the philosophy of simple integral models, is to assume an air 
entrainment model into a cloud which continues to move on the slope in the 
above self-similar way. (We shall discuss the possibility of introducing an 
ambient wind later.) This is not inconsistent with the sort of behaviour 
discussed by Britter et al. [S]. 

In this case the entrainment is assumed just such that the relationship 
between down-slope velocity u, volume V, and density (implicit in g’) is 
preserved. This allows a very natural generalisation of integral models on flat 
ground to the case of a uniform slope. 

However, if we set out in that direction, any test which we were to apply 
to the model would depend both on the entrainment model and on the down- 
slope free-fall model considered here. It would be far preferable if we could test 
the ideas presented here, independently of the precise details of any entrain- 
ment model. In fact we can do this to some extent as is shown in the next 
section. 

4. Comparison with data 

4.1 The experiments of Schatzmann et al. [9] 
4.1.1 Introduction 

As part of their contribution to the CEC Major Technological Hazards 
project, Schatzmann et al. [9] used a boundary layer wind tunnel to model an 
instantaneous release of a dense gas on an inclined plane in conditions of zero 
ambient flow. This corresponds as closely as possible to the idealisation in our 
model, and so it is interesting to compare the predictions model with these 
results. (Steady-continuous releases were also performed, but consideration of 
these is outside the scope of the model presented here.) 

4.1.2 Experimental set-up 
In these experiments instantaneous releases were achieved by filling 

a 450 cm3 cylinder with a mixture of sulphur hexafluoride (SF,) and air to the 
required density and then abruptly retracting the side walls into the wind 
tunnel floor. Ground level SF6 concentrations were then measured at eight 
points down the slope (three on the centre line, five off axis) using artificially 
aspirated hot-wire anemometers with a sampling rate or either 10 or 12.5 Hz. 
The concentration time history from each of the sensors is available without 
additional filtering or averaging. 

Each release was repeated five times using identical initial conditions with 
zero ambient wind. Three different inclines, ranging from 4% to 11.63% (see 
Fig. l), were also used. Note that the largest of these, r= 0.1163, is still 
a shallow slope in the terms discussed earlier. 
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4.2 Comparison of the model with the data 
4.2-l Model considerations 

It is desirable to compare the predictions of the model, independently of any 
particular entrainment model. As it stands in Section 3 the model relates cloud 
velocity with slope, density and volume without recourse to any free para- 
meters (apart from kf which is already effectively determined from the cloud 
spreading law on flat ground). It is therefore our objective to extract these 
quantities from the data in order to test the predicted relation: 

obtained above. 

4.2.2 Data reduction 
In order to do this, we need to know the cloud volume and the relative 

density excess as a function of time and space. In order to avoid complications 
which might arise from cross-slope density variations, we have chosen in this 
study to use only the data from the three sensors which there placed on the 
centre line. 

For all fifteen instantaneous release onto inclined planes pure SF6 was used 
as the working fluid. Assuming only that this is an isothermal flow of an 
approximately ideal gas, we know that the flow is buoyancy conserving. That is 
to say that the cloud-averaged mean density excess 

Ar=CP-Pa)lP* (40) 

is directly proportional to the concentration (contaminant mass per unit 
volume), and is therefore related to the volume V by 

A;, V,=A’V (41) 

where subscript 0 indicates the initial values. 
For the moment let us make the bold assumption that we can use the 

measured concentrations as representative of the mean values, and return to 
argue about this later. In this case the concentration measurements give 
immediate estimates of density and volume via these relationships. From these 
we calculate our model prediction for the cloud velocity U, and test to see 
whether it agrees with the observed rate of travel. 

Schatzmann et al. [9] present volumetric concentration C as fraction of the 
initial concentration (C,) in the cylinder before the release took place. From 
this we estimate the volume as 

VJ V,=(CJC&’ (42) 

and find the required combination of variables 

&V 113 =g;, V, v-2:3 (43) 
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TABLE1 

Resultant estimates of cloud velocity of different slope 

Sensor position c/c, u (ms-‘) 

4.0% Slope 
(61.3,0,0) 
(122.61,0,0) 
(183.91,0,0) 
8.6% Slope 
(61.3,0,0) 
(122.61,0,0) 
(183.91,0,0) 
11.63% Slope 
(61.3,0,0) 
(122.61,0,0) 
(183.91,0,0) 

5.826 1O-2 
1.624 lo-' 
0.962 1O-2 

0.080 
0.052 
0.044 

8.282 1O-2 0.361 
3.188 lo-' 0.263 
1.616 lo-* 0.209 

8.242 1O-2 0.399 

3.540 1o-2 0.301 
1.464 1O-2 0.224 

wherein gb V, can be calculated from the initial conditions. The resultant 
estimates of the velocity u are given in Table 1, taking the concentration (C) 
from the mean of the maximum concentrations measured by each sensor during 
the five repeats, and taking hi = 1.07, a mean spreading Froude number which 
has been seen [lo] to optimise fits to Thorney Island (i.e. flat-ground) data. 

We cannot measure the cloud advection velocity directly from the experi- 
mental data. We can, however, obtain the cloud arrival time at the three sensor 
locations. By plotting arrival time against distance from the source we do get 
at least some indication of the cloud velocity, even though there are only three 
data points for each run. In Figs. 6(a-c) we have plotted arrival times (+) and 
drawn a smooth curve (dotted line) through the data to guide the eye. Our 
predicted velocity is shown as a short line with the appropriate gradient (u) at 
each data point. If our model were exactly correct, and the extraction of the 
cloud volume and density accurate, then these lines would be tangents to the 
curve. Given the uncertainties in the data extraction procedure, we regard the 
results as sufficiently good to support the shallow water model approach. 

It is worth noting that the wedge-shaped flow of our model will take some 
time to set itself up, and we should therefore expect the model to be better in 
the far field. The near field data must reflect the initial slumping which is not 
considered in the model we have presented. It is also interesting that the model 
seems best when applied to the shallowest slope. 

5. Discussion and conclusions 

5.1 Significance of the results 
Our interpretation of the data is of necessity very crude. The assumption 

that the measurements reflect the average concentration (or more particularly 
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Fig. 6. (a) Centre-line distance travelled versus time for the front of a cloud released at rest 
on a uniform slope of 0.04. (b) As for (a) but with uniform slope of 0.086. Data are marked (+) 
and interpolated with a dotted line to guide the eye. The short solid lines indicate the 
predicted velocity, which if exactly correct, should be tangent to the curve. 
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Fig. 6. (c) As for (a) but with uniform slope 0.1163. 

the concentration which corresponds to the best choice of density in the 
shallow water model) looks at first sight to be somewhat cavalier, and to take 
rather too literally the old box model idea that concentration and density 
variations are well represented by profiles which are uniform within the cloud 
and zero outside it. 

However, let us now suppose that the profiles are merely self-similar to some 
reasonable approximation. This is still an assumption of course, but a much 
weaker one. Self-similarity means that the cloud-average concentration and 
density are simply constant multiples of the ground-level centre-line value, In 
particular the combination A’V, (where A’ is now based on the ground-level 
centre-line density) would still be constant in the self-similar regime. There is 
still some uncertainty in evaluating this from the initial (non-self-similar state) 
but this is reduced by the square root in evaluating the velocity. 

All in all then, we regard the comparison shown in Figs. 6(a-c) as successful 
to the degree of accuracy which we can expect of the model. In particular the 
predicted 11j3 dependence is not unrealistic. It is, however, difficult to test the 
precise form of this slow dependence on a limited data set. Further data on 
even shallower slopes might be more revealing in this respect. 

It is also worth noting that slopes of practical interest may only be up to 1 in 
10 or so (I =O.l) which are therefore treatable within this framework. 

A general insensitivity to the slope is noted by Britter et al. IS]. They 
however quote a dependence of the cloud velocity on the slope of sin O/e 
compared to our result of (tan S) ij3. Our methods are inappropriate to large 
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slopes, but clearly their expression cannot be valid close to 8 = 0, and so a direct 
comparison is difficult. It is made more difficult by the fact that our result is for 
a cloud of fixed volume and density, whereas Britter et al. [S] discuss the 
velocity of entraining clouds. There is scope for further work here. 

5.2 Further comments 
There are two possible ways of seeking further confirmation of the model, 

which we can contemplate here. 

5.2.1 Development of integral models 
One way is to combine the ideas above with a simple computerised model. 

Entrainment can be introduced in the usual way, although there is clearly 
some freedom about how exactly to do this. The simplest way of allowing for 
advection with the wind is to add the slope-generated velocity discussed here to 
the wind-advection velocity (vectorially). The predictions of such a model 
could be compared with a wider data-set. Let us emphasise, however, that this 
approach would be validating a whole combination of different aspects of the 
model, including entrainment as well as bulk motion, and therefore, whilst 
having its own benefits, loses some of the advantages of the simple test 
presented here. A combination of the two approaches is therefore desirable. We 
intend to pursue this avenue. 

52.2 Further qualitative predictions of the model 
The model presented here has two qualitative aspects which distinguish it 

from the results of other approaches. In principle these can be tested if 
appropriate data are obtained. 

Firstly, the approach presented here gives rise to a picture of slumping 
followed by translation for a cloud released from a highish aspect ratio in calm 
conditions. (By “highish” we mean the regime discussed earlier where the 
cloud is tall relative to the drop in the slope, but still shallow.) This separation 
of slumping and translation contrasts with the slumping accompanied by 
downhill motion found in the models of Deaves and Hall [l] and Nikmo and 
Kukkonen [2]. In our approach this is a consequence of the boundary condi- 
tions: while the uphill edge depth and the downhill edge depth are the same, 
the uphill boundary will spread in the same way as the downhill one. The 
material will rearrange itself within the boundaries so that the centre of mass 
moves downhill, but only when the depth of the cloud is comparable with the 
drop in the slope over its length will the overall downhill translation become 
apparent. Ultimately the gravity spreading is predicted to stop, and any cloud 
growth will be due purely to the relatively slow process of entrainment. This is 
illustrated in a two-dimensional numerical solution of the shallow water model 
shown in Figs. 7(a-f). In this illustration the cloud is started off as close as 
possible to the parabolic-topped, flat-ground similarity solution variously de- 
scribed by Fannelop and Jacobsen [5], Wheatley and Webber [43, Grundy and 
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Fig. 7.(a, b). A cloud released from rest on a slope - in two dimensions. The cloud is released 
spreading in a way which would continue indefinitely in a self-similar way if the ground were 
flat. Differences from the symmetric self-similar flow begin to appear as the cloud aspect ratio 
becomes close to the gradient of the slope, but in this regime the cloud is largely unaffected 
by the slope. 

Rottman [6] and Webber and Brighton [7]. This shows the onset of a significant 
deviation from the self-similar behaviour introduced by the slope, and the 
transition to the “wedge” behaviour described here. 

Secondly, the cloud width predicted by the model is n times its overall 
length. Whilst exact confirmation of this is unlikely given the oversimplicity of 
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Fig. 7.(c, d). Continuing the flow from Figs. (7a, b) a hydraulic jump appears separating 
a “head” and a “tail” region. The slope is having a noticeable effect here, but this is 
a transition to the final regime. 

some of our assumptions, any experimental visualisation of this flow which 
showed a cloud to be wide compared to its length would be an interesting 
support for this approach - we know a priori of no other reason why such 
a result should appear. 
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Fig. 7.(e. f). Continuing the flow from Figs. 7(a-d) in the final regime the hydraulic jump 
collapses and the cloud reaches the wedge shape which is moving down the hill but no longer 
spreading. 
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